2017 한국음운론학회 여름학술대회 2017. 6. 17(토) 서울시립대학교

한국어 명사의 음소배열제약 -통계적 학습과 단어성 판단 조사-

서울대학교 언어학과 박사과정 박나영 (arimnet@naver.com)

음소배열제약의 정의

- ▶ 음소배열제약: 음소 단위의 결합 또는 회피에 대한 적형성 인식
- ▶ 예: 영어의 음소배열제약 *,,[lb
 - ✓ 비단어 <u>lb</u>ick☞ 제약을 위배, 비적형으로 인식됨
 - cf. 비단어 <u>bl</u>ick ☞ 제약을 위배하지 않음, 적형으로 인식됨
- ▶ '적형-비적형'의 이분법적 인식 → 범주적인 음소배열제약 포착

비범주적 적형성 인식

- ▶ 다수 연구가 비범주적 적형성 인식을 보고
 - Vitevitch et al. (1997), Albright (2006), Shademan (2007)
- ▶ 실험을 통해, 영어 '[비음]-[저해음]'에 대한 세분화된 적형성 인식을 밝힘(Hay et al. 2003)
 - ✓ 적형성 /nt/ > /nf/ > /mk/ > /ms/
- ▶ 어휘부(lexicon)의 빈도가 적형성 인식을 결정한다고 주장
 - ✓ 고빈도 /nt/
 - ✓ 중빈도 /nf/ > /mk/ > /ms/

- 비범주적 적형성과 빈도와의 관계를 통계적 문법으로 포착하려는 시도
 - ✓ Coleman & Pierrehumbert (1997)
 - Stochastic Context-free grammar (통계적 문맥 자유 문법)
 - ✓ Hayes & Wilson (2008)
 - A Maximum Entropy Model of Phonotactics (최대 엔트로피 음소배열제약 모델)

한국어의 음소배열제약

- ▶ 빈도 0인 연쇄에 대한 음소배열제약
 - ✓ 제약 예1: 한국어 음절 두음에 [ŋ]가 허용되지 않는다.

```
* \sigma \begin{bmatrix} +nasal \\ +dorsal \end{bmatrix} \stackrel{\Rightarrow}{\rightarrow}, * \sigma [\eta]
```

✓ 제약 예2: 설정 저해음과 /j/계 이중모음의 연속을 허용하지 않는다.

```
\begin{bmatrix} -sonorant \\ +coronal \end{bmatrix} \begin{bmatrix} -back \\ -syllabic \end{bmatrix}
```

✓ 제약 예3: 저해음과 공명음의 연쇄를 허용하지 않는다.

```
*[-sonorant][+sonorant]
```

▶ 각 제약은 음성학적, 음운론적으로 자연스러움

비범주적 적형성 인식에 대한 단서

- ▶ 저빈도 연쇄에 대한 직관적 서술(허웅 1985)
 - ✓ 예: [I]은 w-계 이중모음, [je, jɛ] 결합이 잘 나타나지 않는다.

- ▶ 계량적 연구
 - ✓ 음소 연쇄에 대한 빈도 조사
 - ✔ 연쇄 결합 관계를 자질로 표시한 제약으로 제시
 - 유재원(1997): 후설모음은 장애음과의 결합을 꺼린다.

- ▶ 계량적 연구는 비범주적 적형성 인식을 체계적으로 포착하지 못함
 - ✓ 해당 연쇄가 제약으로 기능할 수 있는 발생 빈도에 대해 기준이 분명하지 않음
 - ✔ 양적 정보가 문법에 직접 반영될 수 있는 기제가 없음

통계적 문법 도입

- ▶ 연쇄의 양적 정보가 문법에 직접 반영된다고 가정
 - ✓ 음소 결합 관계를 통계에 기초하여 파악하고, 그 실재를 점검
 - [자음]-[모음], [모음]-[자음]의 발생 빈도와 이에 근거한 통계치를 계산하고, 이에 따른 선호도 인식을 밝힘 (이용은 2009)
- ➤ Cho (2012): 최대 엔트로피 음소배열제약 모델 채택
 - ✔ 어휘부 내에서 발생 빈도가 낮은 연쇄를 제약으로 학습

예:
$$\begin{bmatrix} -high \\ -back \end{bmatrix}$$
[+ $lateral$] 즉, *[el] 가중치: 3.772

✓ 개별 연쇄에 대한 비범주적 적형성을 예측할 수 있음

이제까지의 조사 대상: 한국어 전체

▶ 대부분의 양적 연구가 어휘부를 구분하지 않고 조사

- ➤ Cho (2012)의 학습 어휘부
 - ✓ 차용어를 제외한 5,702 단어 학습(조남호 2003)
 - ✓ 품사 및 어원 구분을 하지 않음
 - ✓ '한국어 전체'를 학습자의 어휘부로 가정

어휘부가 세분화될 가능성 제기

단어의 어원에 따라, 음소 출현 빈도가 다를 수 있음이 언급됨

- 예: 한자어는 고유어와 비교해 'ㅕ, ㅘ '가 많이 사용되고, '—' 가 상대적으로 적게 사용된다. (안소진 2009)
- ▶ 단어의 형태론적 구성이 음소 결합의 회피 조건이 될 수 있음
 - 예: 현대 국어의 형태소 내부에서는 'ㄹ' 뒤에 오는 설정 저해음은 평음이 될 수 없고, 격음 또는 경음이어야 한다. (고광모 1996)

연구 목적

- ▶ 세분화된 어휘부에 대한 문법 학습
- ▶ 개별 어휘부 문법이 적형성 판단에 영향을 미치는지 살피고자 함
 - ✓ 개별 어휘부 문법 간 상대적 기여도 점검

연구 방법

문법: 최대엔트로피 음소배열제약 모델

대상: 한국어 명사 및 세분화된 어휘부

2음절어 조사

단음절어 조사

평균

상관관계

혼합효과 선형모델

최대 엔트로피 음소배열제약 모델(HAYES & WILSON 2008)

▶ 가정: 음소 연쇄의 발생 빈도 ≈ 음소 연쇄에 대한 적형성

▷ 입력: 어휘부 + 자질 목록 → 출력: 제약 + 가중치

- ▶ 제약의 형태(*[자질]-[자질], 가중치)
 - ✓ 유표성 제약만이 학습된다.
 - ✓ 가중치
 - 해당 연쇄의 회피 정도를 나타냄

- ➤ 해당 연쇄의 비적형성 점수(harmony)
 - ✓ 제약의 가중치를 통해서, 비적형성 점수를 계산할 수 있음
 - ✓ 해당 연쇄의 적형성은 하나 이상의 제약을 위배할 때, 위배되는 제약들의 가중치 합, 즉 비적형성 점수로 예측됨
 - ▶ 따라서, 비적형성 점수가 높을수록 비적형으로 인식될 것을 예측

- ▶ 모델의 특징
 - ✔ 음소배열제약에 대한 귀납적 모델
 - ✔ 음소의 결합 관계를 체계적으로 살필 수 있음
 - ✔ 어휘부의 양적 정보를 문법에 직접 반영할 수 있는 기제

어휘부의 구성

- ▶ 한국어 화자의 적형성 인식이 '명사'에서 비롯된다고 가정
 - ✓ 명사는 한국어 품사의 대다수를 차지
 - ✓ 한국어 화자들이 새로운 단어를 대부분 '명사'로 인지
 - ✓ 한자어와 고유어에 대한 충분한 자료를 보장받기 위함

- ▶ 명사: 37,157 단어
 - ✓ 빈도 5 이상인 일반명사(강범모·김흥규 2009)
 - ✓ 표준국어대사전(http://www.korean.go.kr)에 등재된 단어

학습 대상 어휘부: 단어

▶ 학습 어휘부 1: 명사 전체

예: 강바닥, 규산염

- ✓ 한국어 연쇄에 대한 대부분의 계량적 연구는 어휘부를 구분하지 않음
- ✓ 본 연구: 명사 전반에 유효한 제약을 탐색하고자 함
- 어원과 단어의 형태론적 구성에 따라, 학습 어휘부를 세분화

학습 대상 어휘부: 단어

- ▶ 학습 어휘부 2: 단일어 (17,980 단어)
 예: 하늘, 갈등
 - ✓ 일반적으로 음소배열제약 탐색 시, 형태소 1개로 이루어진 단어(즉, 단일어)를 기본 단위로 가정
 - 영어: Hayes&White 2013

✓ 한국어의 양적 연구에서는 '단일어'에 대한 탐색이 시도되지 않음

✓ 본 연구: 단일어 부류를 구성하여, 단일어 음소배열제약을 탐 색하고자 함

학습 대상 어휘부: 단어

- ▶ 학습 어휘부 3: 고유 단일어 (1,871 단어) 예: 하늘, 가난
 - ✓ 한국어 화자의 순수한 문법 특징이 고유 단일어에 잘 반영되는 것으로 가정됨 (김경일 1985, 한성우 2006, Ito 2007)

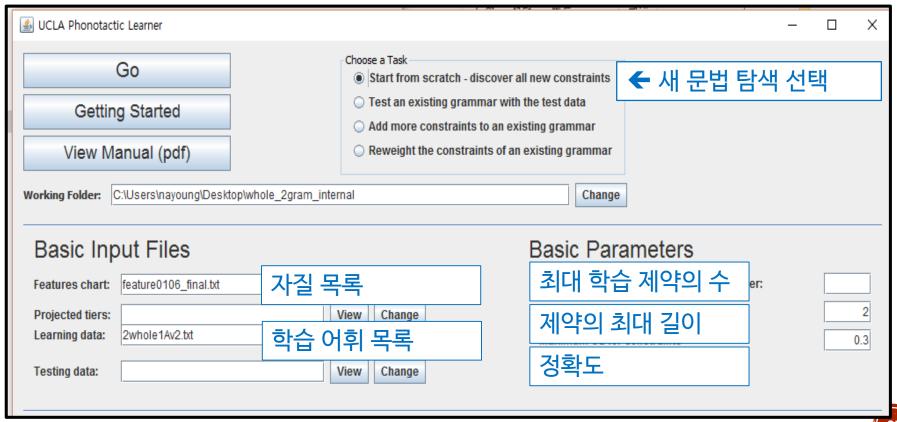
- ▶ 학습 어휘부 4: 한자 단일어 (16,088 단어) 예: 공기, 갈등
 - ✓ 본 연구: 형태론적 구성 조건을 기준으로, 고유 단일어에 대응 하여 구성

분류 기준 및 입력형

- ▶ 어원
 - ✓ 표준국어대사전 원어 정보

- ▶ 단일어 여부
 - ✓ 표준국어대사전 형태소 구분 정보 이용
 - ✓ 형태소 구분 정보가 표시되어 있지 않더라도, 단어의 일부가 사전에 등재되어 있다면 해당 단어는 복합어로 분류함
 - 예: 간암

- ▶ 각 단어는 표준국어대사전 대표 발음형으로 입력
 - ✓ 10모음 체계 채택


학습 대상 어휘부: 음절

- ▶ 음절을 어휘부의 구성 단위로 가정할 수 있음
 - ✓ 한자어는 어원적으로 구성 음절이 형태소에 대응될 수 있음이 언급됨
 - 한자어의 음소배열제약은 주로 한 음절 내에서 탐색됨 (신지영 2009, 안소진 2009)
 - ✔ 고유어에 대해서도 같은 가정을 적용

- ▶ 음절을 어휘부의 구성 단위로 삼아 학습
 - ✔ 고유 단일어와 한자 단일어를 구성하는 기저 음절형 기준
 - ✔ 각 음절과 음절의 유형 빈도를 입력 자료로 사용
- ▶ 학습 어휘부 5: 고유 단일어 구성 음절 (679 음절)
- ▶ 학습 어휘부 6: 한자 단일어 구성 음절 (450 음절)

학습 시뮬레이션

- > 소프트웨어: UCLA phonotactic learner
 - ✓ 입력: 어휘 목록 + 자질 → 출력: 제약 *[자질][자질] + 가중치
 - ✔ 학습 조건: 최대 학습 제약의 수, 제약의 최대 길이, 제약의 정확도

▶ 자질 목록

		aspirate	tense	labial	high	low	back	round
Н	р	-	-	+	0	0	0	0
п	ph	+	-	+	0	0	0	0
AA	pp	-	+	+	0	0	0	0
1	е	0	0	0	ı	ı	-	-
H	E	0	0	0	ı	+	-	-
	i	0	0	0	+	-	-	-
F	а	0	0	0	-	+	+	-

▶ 단어 단위 입력

<u>명사</u>	<u>단일어</u>	<u>한자 단일어</u>	<u>고유 단일어</u>	
강바닥 kangppata 규산염 kyusannyv 하늘 hanxl	k 공기 kongki 가늠 kanxm 곤란 kollan	공기 kongki 갈등 kalttxng 가훈 kahun	하늘 hanxl 가난 kanan 가늠 kanxm	

▶ 음절 단위 입력(음절 및 유형 빈도)

<u>고유 단일어 음절</u>				한자 단일어 음	절
가	ka	62	가	ka	219
각	kak	4	각	kak	123
갈	kal	12	갈	kal	15

학습 조건

▶ 개별 어휘부별 학습 조건 요약

	단어 문법 학습	음절 문법 학습	
제약의 최대 길이	2	3	
최대 학습 제약의 수	제한하지 않음	150	
정확도	0.3		

▶ 각 어휘부별로 5번씩 학습

학습 조건

▶ 단어 문법 학습: 두 음소 결합 관계를 탐색

제약: *[+
$$labial$$
] $\begin{bmatrix} +high \\ +back \\ -round \end{bmatrix}$ 예: *[pi]

음절 문법 학습: 세 음소의 결합 관계까지 살핌으로써 회피 음절을 일반화된 문법 제약으로 포착하고자 함

제약: *
$$[+labial]$$
 $\begin{bmatrix} -low \\ +back \\ -round \end{bmatrix}$ $\begin{bmatrix} -sonorant \\ +dorsal \end{bmatrix}$ 예: * $[pik, p \land k]$

학습 결과 요약

▶ 학습 제약의 수

명사	단일어	고유 단일어	한자단일어
182~211개	142~160개	106~115개	161~170개

고유 단일어 음절	한자 단일어 음절
100~103개	150개

- ▶ 한국어 비출현 연쇄뿐만 아니라, 제한적으로만 발생하여 회피되는 것으로 가정되는 연쇄도 제약으로 학습됨
 - ✓ 개별 어휘부의 음소 결합 분포가 반영되어 학습됨
 - ✓ 연쇄의 빈도에 따라 가중치가 부여됨

발생 빈도 0인 연쇄에 대한 학습

- ▶ 높은 가중치가 부여된 제약으로 학습됨
 - ✓ 회피 정도가 강한 제약

*# $\begin{bmatrix} +sonorant \\ +dorsal \end{bmatrix}$ (즉, $*_{w}[\eta)$						
명사	단일어	고유 단일어	한자	고유 단일어 음절	한자 단일어 음절	
6.48	6.48	4.29	6.38	4.05	3.22	

- ▶ 낮은 가중치의 제약을 다수 학습하여 포착
 - ✓ 예: 고유 단일어
 - 제약 1: *[-sonorant] [-aspirate] 가중치: 1.15
 - 제약 2: *[-sonorant][-tense] 가중치: 2.54
 - 저해음과 평음의 연쇄(출현 빈도 0) 포착
 - [저해음]과 [평음] 및 [격음]의 연쇄를 저지하는 제약(제약 2)에 더해 [저해음]과 [평음]을 금지하는 제약(제약 1)이 학습됨

저빈도 연쇄에 대한 학습

▶ 상대적으로 낮은 가중치가 부여된 제약으로 학습됨

* $[+labial]$ $\begin{bmatrix} +high \\ +back \\ -round \end{bmatrix}$ ($\stackrel{\rightleftharpoons}{\lnot}$, * $[mi, pi. p'i. p'i]$)						
명사	단일어	고유 단일어	한자	고유 단일어 음절	한자	
3.13	2.92	3.31	2.09	3.16	4.10	

학습 어휘부별 제약 -단어 학습 문법-

모든 어휘부에서 학습되는 제약들이 있는 반면, 일부 제약은 특정 어휘부에서만 학습됨

▶ 단일어 제약 예(&고유 단일어&한자 단일어 제약)

제약	의미	가중치	예외	명사 출현 예
*[+labial][+dorsal]	[mk, pk'] 회피	1.65	감각, 잠깐	밥공기, 기업가

학습 어휘부별 제약 -단어 학습 문법-

▶ 고유 단일어 제약 예

제약	의미	가 중 치	예외	한자어 출현 예
* [-word_boundary][+glottis]	비어두 [h] 회피	3.37	사흘	방학, 구호

▶ 한자 단일어 제약 예

제약	의미	가중치	예외	고유어 출현 예
$egin{array}{c} \star [+sonorant] \left[egin{array}{c} -low \\ +back \\ -round \end{array} ight]$	[mɨ, mʌ] 회피	3.81	금언	머리, 구멍

학습 어휘부별 제약 -음절 학습 문법-

- ▶ 최대 세 음소 결합까지 고려하여 학습
 - ✔ 음절 내 회피 음소, 두 음소 결합 회피 제약이 포함됨
 - 한자어 음절 문법 *[+tense]

- ✓ 세 음소 결합 회피 제약 학습
 - •이른바 '우연한 빈칸'으로 일컬어지는 음절이 자질 결합 문법으로 포착될 수 있음

▶ 고유 단일어 음절 제약

제약	의미	가중치	예외음절	한자 단일어 음절
*[+aspirate][+high][-sonorant]	[pʰ,tʰ,cʰ][i, ɨ, u][p, k] 회피	1.82	축 (뒤축)	칙, 특

▶ 한자 단일어 음절 제약

제약	의미	가중치	예외 음 절	고유 단일어 음절
*[+coronal][+round][+labial]	[t, s, c][o,u][p, m] 회피	1.12	-	숨, 줌, 돔

단어 적형성 판단 조사

- > 목적
 - ✓ 한국어 화자의 단어 적형성 인식이 학습된 문법들의 예측과 얼마나 일치하는지를 살펴 보고자 함
- ▶ 조사 대상자
 - ✓서울/경기 지역 출신 화자 139명 (타 지역에서 4년 이상 거주한 경우 제외)
- ▶ 조사 방법: 리커트 척도(1-7점) 방법 채택
 - ✓ 각 응답자가 컴퓨터 화면에 제시된 단어를 보고, 한국어다움을 판단하도록 함
 - ✓ 온라인 설문조사 프로그램 퀄트릭스(Qualtrics) 이용

- 조사단어 (1): 단음절어 819개[기존단어 포함]
 - ✓ 제약 위배 형태 위주
 - 구성: [자음] [모음] [자음], [자음] [활음] [모음] 위주
 - 예: 긱, 빕, 줄, 촐, 규, 뷰
- ➤ 조사단어 (2): 2음절어 600개 [실제 599 단어 분석]
 - ✓ 단음절어에서 확인할 수 없는 [자음] [자음], [모음] [모음],[모음] [격음] 제약 위배를 확인
 - ✓ 기존 단음절어 조합 & 단음절어가 아닌 음절을 조합: 500개
 - ✓ 비출현 음절을 무작위로 조합:100개
 - ✓ 조사단어(비단어) 구성 예

위배 연쇄	조사단어	1음절의 실제 단어 여부	2 음 절의 실제 단어 여부
n+h	밥턱	YES	YES
pt ⁿ	핍틍	NO	NO

조사과정

'한국어 기준' 제시: 실제 2음절어 20개

고유 단일어 조건

명사 조건

♥ 사용 빈도가 높은 2음절어 제시

단어성 판단 조사(1-7점)

2음절어 조사

단음절어 조사

- ✓ 기준: "댴[댴]" 은 전혀 한국어답게 들리지 않습니다. 이와 같은 단어에 1점을 줄 수 있습니다.
- ✓ 실제단어 또는 새로운 단어 100개를 보여드립니다.
 각 단어의 발음을 고려하여, 한국어다움을 판단해 주세요.

1점- 절대 한국어 단어처럼 들릴 수 없다.

4점- 한국어 단어일 수 있지만, 이상하게 들릴 것이다.

7점- 전형적인 한국어 단어다.

조사화면

▶ 기존단어 제시

나는 **"국내[궁내]"**(을/를) 말해.

▶ '한국어다움'을 판단; 괄호 안 [발음] 기준

다음 "단어 [발음]"의 한국어다움을 판단해 주세요. (1점-불가능, 7점-전형적)

나는 **"핍칙[핍칙]"**(을/를) 말해.

1 2 3 4 5 6 7

결과 분석

- ▶ 개별 어휘부가 응답 점수에 영향을 미치는 영향을 확인하고자 함
- 고유 단일어 제시 조건과 명사 제시 조건의 결과를 통합

- [1] 제시 단어에 대한 응답 점수의 평균
 - 제약을 위배하는 형태(위배형)가 제약을 위배하지 않는 형태(통제형)보다
 다 응답 점수가 더 낮을 것이 예측됨
- [2] 제시 단어의 응답 점수 평균과 비문법성 점수의 상관관계
 - 제시 단어가 한국어답지 않을수록, 응답 점수가 낮음
 - 제시 단어의 비문법성 점수가 높을수록 한국어답지 않을 것이 예측됨
 - 비문법성 점수와 응답 점수는 '음의 상관 관계'를 보일 것으로 예측됨

[3] 혼합 효과 선형 모델

- 어떤 어휘부의 비문법성 점수가 응답 점수에 유의미한 영향을 미치는지를 종합적으로 보고자 함
- 조사단어와 응답자의 임의 효과를 고려한 통계 모델

분석 자료의 예

- ▶ 응답 점수
- ▶ 조사단어가 개별 어휘부의 문법을 위배하는 정도에 따라 비적형성 점수를 받음

▶ 단음절어

조사단어	응답자	응답 점수	명사	단일어	고유 단일어	한자 단일어	단일어	고유단일어 음절	한자단일어 음절
긱[긱]	sub10	1	0	0	0	0	0	6.726	2.897
긱[긱]	sub56	2	0	0	0	0	0	6.726	2.897
븐[븐]	sub28	2	5.007	5.412	3.311	5.055	5.412	3.164	4.103
븐[븐]	sub38	3	5.007	5.412	3.311	5.055	5.412	3.164	4.103

▶ 2음절어

조사단어	1	2	응답자	응답점수	고유 단일어	한자 단일어	단일어	명사	고유단일어 음절	한자단일어 음절
벅촐	퐈	침	sub22	1	2.544	1.615	0	0	3.758	6.696
핍틍	핍	ШО	sub2	1	2.544	3.546	5.223	3.496	7.803	19.08

- ✓ 개별 음절 학습 문법이 예측한 2음절어의 비적형성 점수
 - 개별 음절 학습 문법이 1음절과 2음절에 부여한 비적형성 점수의 합

조사단어	1	2	고유단일어 음절	1음절_ 고유단일어 음절	2음절_ 고유 단일어 음절				
벅촐	벅	촐	3.758	0	3.758				
조사단어	1	2	한자단일어 음절	1음절_ 한자단일어 음절	2음절_ 한자단일어 음절				
벅촐	벅	촐	6.696	3.844	2.852				

단음절어 조사 결과: 평균

제약을 위배하는 음절(위배형)이 제약을 위배하지 않는 음절 (통제형)보다 낮은 응답 점수를 받음.

✓ 핍 응답 점수: 3.67 *[+labial][-back][+labial] 위배

cf. 겸 응답 점수: 4.83

단어 학습 문법	음절 학습 문법	평균	예			
허용	용	6.20	면	겹	겸	심
위배	허용	4.98	10 0	언	칭	싱
허용	위배	4.90	바	밤	핍	걀
위배	위배	4.11	호0	틀	눌	믑

단음절어 조사 결과: 상관 관계

- > 조사단어별 응답 점수 평균과 어휘부별 비문법성 점수의 상관 관계
 - ✔ 약한 음의 상관 관계를 보임
 - ✔ 음절 학습 문법이 단어 학습 문법보다 상관 관계가 다소 높다.

단어 학습 문법	상관 계수
명사	-0.45
단일어	-0.51
고유 단일어	-0.45
한자 단일어	-0.43

음절 학습 문법	상관 계수
고유 단일어 음절	-0.55
한자 단일어 음절	-0.57

2음절어 조사 결과: 평균

- ▶ 단음절어에 비해, 상대적으로 응답 점수가 낮음
- 어떤 제약도 위배하지 않는 형태(통제형)는 다른 위배형보다 높은 응답 점수를 받음

단어 문법	음절 문법	평균	예
허용	허용	4.25	판개 (4.55) 풀정
<u>위배</u>	허용	3.86	
허용	위배	3.64	(3.82) 병든 (3.6)
위배	위배	3.05	찹든 (2.88)

2음절어 조사 결과: 상관 관계

- ▶ 비단어별 응답 점수 평균과 어휘부별 비문법성 점수의 상관 관계
 - ✓ 약한 음의 상관 관계 확인 cf. 고유 단일어
 - ✔ 단음절어 조사에 비해, 상관 관계가 낮음
 - ✓ 음절 학습 문법이 단어 학습 문법보다 상관 관계가 다소 높음

단어 학습 문법	상관 계수
명사	-0.17
단일어	-0.24
고유 단일어	-0.12(p=0.03)
한자 단일어	-0.24

음절 학습 문법	상관 계수
고유 단일어 음절	-0.35
한자 단일어 음절	-0.48

혼합효과 선형 모델

- 단음절어 조사와 2음절어 조사를 통합
 - ✓ Imer(응답점수 ~
 +조사단어의 유형+명사+단일어+고유 단일어+한자 단일어+고유 단일어 음절+한자 단일어 음절+(1|조사단어)+(1|응답자))
- ▶ 유의미한 효과만으로 통계 모델 구성

	Estimate	Std. Er ror	df	t value	Pr(> t)
(Intercept)	5.76	0.08	303.51	69.90	<0.001***
조사단어유형(2음절어	-1.40	0.06	1366.98	-22.06	<0.001***
고유 단일어	-0.11	0.02	1371.40	-6.00	<0.001***
고유 단일어 음절	-0.24	0.02	1381.95	-14.34	<0.001***
한자 단일어 음절	-0.11	0.01	1367.36	-18.37	<0.001***

- ▶ 세분화된 어휘부가 적형성 판단에 영향을 끼치는 것으로 보임
 - ✔ 세분화된 어휘부를 대상으로 제약을 탐색할 필요를 시사함

- ▶ 개별 어휘부의 상대적 기여도(잠정적)
 - ✓ 고유 단일어 음절 〉 고유 단일어 ≒ 한자 단일어 음절

요약

학습 어휘부를 세분화하여, 음소배열제약을 학습

- 단어 단위 문법뿐만 아니라, 음절 단위의 문법을 포함
- 비범주적 인식을 포착할 수 있는 제약을 학습

단어성 판단 조사

- 화자가 학습 문법이 예측하는 비문법성을 인식하는지를 점검
- 개별 어휘부의 영향을 부분적으로 확인

남은 과제

개별 어휘부별 제약 점검

- 어휘부별 동일하거나 유사한 제약이 학습됨
- 제약의 일반화가 필요할 수 있음

제약 선별

• 화자들이 학습된 모든 제약을 인식하는 것으로 보이지 않음

적형성 인식에 영향을 미치는 기타 요인

片人ト言トLI にト。

