LSK conference 2012, October 27th

The variation of vowel hiatus resolution in Korean

Park Na-young (Seoul National University)

arim20041@gmail.com

Outline

0. Goal:

- To capture the gradual intuition about variable vowel hiatus resolutions in Korean
- To formalize the variable patterns as a grammar of an individual speaker
- 1. Types of vowel hiatus resolutions in Korean
- 2. Previous studies
- 3. Experiment: Well-formedness test
- 4. Result
- 5. Analysis: Stochastic Optimality theory

1. Hiatus resolutions in Korean

Hiatus:

Stem-final vowel + Suffix-initial vowel / Λ , a/

e.g. $c\underline{\mathbf{u}}$ _{stem} + $\underline{\mathbf{\Lambda}}$ 'give'

 Usually, different resolutions are adopted depending on the stem-final vowel quality.

2. The stem-final vowel /i, o, u/

- Glide formation $/i, o, u/ \rightarrow [y, w] / + V$
 - ✓ Obligatory if no onset e.g. $o + a \rightarrow wa$ (*oa) 'come'
 - ✓ Optional if yes onset e.g. $p^{h}i + \Lambda \rightarrow p^{h}y\Lambda \sim p^{h}i\Lambda$ 'bloom' e.g. $nanu + \Lambda \rightarrow nanw\Lambda \sim nanu\Lambda$ 'divide'

2. The stem-final vowel /i, o, u/

- Glide Insertion if yes onset
 ✓ Optional
 Ø → y/i_+ Λ e.g. p^hi + Λ → p^hiyΛ ~ p^hiΛ
 Ø → w/{o, u}_+ Λ e.g. po + a → powa ~ poa
 - Hiatus retention if yes onset; No change
 ✓ Optional
 e.g. p^hi + Λ → p^hiΛ ~ p^hiγΛ ~ p^hyΛ
 e.g. po + a → poa ~ powa ~ pwa

3. The stem-final vowel /e/

- /ʌ/-deletion
 - ✓ Optional $/\Lambda/ \rightarrow \emptyset / e + _$ e.g. k'e + $\Lambda \rightarrow k'$ <u>e</u> 'break'
- /y/- insertion • Optional $\emptyset \rightarrow y / e_{+} \Lambda$ e.g. k'e + $\Lambda \rightarrow k'ey\Lambda$
- Hiatus retention
 - ✓ Optional e.g. $k'e + \Lambda \rightarrow k'e\Lambda$

4. The stem-final vowel /i/

- /i/-deletion
 - ✓ Obligatory

$$/i/ \rightarrow \emptyset$$
 e.g. $k'i + \Lambda \rightarrow k'\Lambda$ 'extinguish'

Previous studies

1. Glide Formation

- Glide formation is generally regarded as "a kind of shortening process"
- Syllable count effect

Glide formation is applied more often to polysyllabic than monosyllabic stems.

Vowel quality effect

The rate of Glide formation differs depending on the quality of the stem-final vowel

- Different studies provide different descriptions on syllable count effect
 - i. 기세관 1984, 엄태수 1996

	y glide formation		w glide formation
mono-σ	$p^{h}i + \Lambda \rightarrow p^{h}y_{\Lambda}$ 'bloom'	<	$cu + \Lambda \rightarrow cw\Lambda$ 'give'
poly-σ	$tani + \Lambda \rightarrow tany\Lambda$ 'commute'	>	$nanu + \Lambda \rightarrow nanw\Lambda$ 'divide'

ii. 고광모 1991

	y glide formation		w glide formation
mono-σ	$p^{h}i + \Lambda \rightarrow p^{h}y_{\Lambda}$ 'bloom'	<	$cu + \Lambda \rightarrow cw\Lambda$ 'give'

iii. 송철의 1995

	y glide formation		w glide formation
mono-σ	$p^{h}i + \Lambda \rightarrow p^{h}y\Lambda$ 'bloom'	II	$cu + \Lambda \rightarrow cw\Lambda$ 'give'
poly-σ	$tani + \Lambda \rightarrow tany\Lambda$ 'commute'	>	$nanu + \Lambda \rightarrow nanw_{\Lambda}$ 'divide'

2. Glide Insertion

- Previous studies differ in the descriptions of the **trigger** of glide insertion.
 - e.g. $p^{h}i\Lambda \rightarrow p^{h}i\gamma\Lambda$

 $poa \rightarrow powa^{?}$ $tu\Lambda \rightarrow tuw\Lambda^{?}$ $t'e\Lambda \rightarrow t'ey\Lambda^{?}$

Stem-final vowel	Previous studies
i	정연찬 1997, 유필재 2001
i, 0	김현 1999
i, u	강옥미 2003
i, o, u	도수희 1983, 김정태 1999, Kim 2000
i, e, o, u	황규직·신남철 1979, 송철의 1995, 엄태수 1996, 강옥미 2003, 김 경아 2003, 최명옥 2004, 이진호 2005, Kim 2000, 임석규 2011

Cf. GI with monosyllabic stem /i/ is preferred over polysyllabic /i/ (엄태수 1996) $p^{h}i\Lambda \rightarrow p^{h}iy\Lambda$ $tani + \Lambda \rightarrow taniy \Lambda$ (?)

3. Vowel Coalescence

- Example $cu+\Lambda \rightarrow co$ 'give' $tu+\Lambda \rightarrow to$ 'put'
- Restrictions
 - ✓ monosyllabic stem-final vowel /u/ (Kim 2000)
 - ✓ lexical exception (Sohn 1987, Lee 2001)

4. Vowel Deletion

- /u/-deletion
 kak'u+∧ → kak'∧ 'cultivate'
 nanu+∧ → nan∧ 'divide'
 - ✓ Typically, it is applied to disyllabic stems (Kim 2000) cf. Forms with u-deletion are unacceptable (유필재 2001)
- /ʌ/-deletion,
 - $k'e + \Lambda \rightarrow k'e$ 'break'
 - ✓ No previous studies report how often this deletion may occur.

5. Problems

No quantitative data

- ✓ The data of the previous research are mostly based on the intuition of single speaker, i.e. the author.
- ✓ No previous study reports frequencies of the processes involved in the hiatus resolutions.
- ✓ There is some disagreement on the previous description of phonological conditions of the processes.
- Korean speakers' intuition regarding the grammaticality of each vowel hiatus resolution has not been captured.
- Few formal analyses of variations have been proposed.

- 1. Task: Well-formedness test
- Participants were asked to judge how natural the stimulus is.
- Well-formedness scale

2. Stimuli

- Tokens are selected, considering vowels and syllable count.
 -Vowels: i, o, u, e
 - -Syllable count: monosyllable(1), disyllable(2)
- Processes are applied on tokens
 - GF, GI, HR, o, u-Del., A-Del., u-Coal.
- The number of words in each condition

Token Process	I-1	I-2	U-1	U-2	0-1	E-1	E-2
GF	8	10	5	10	5		
HR	8	10	5	10	5	2	2
GI	8	10	5	10	5	2	2
o, u-Del.			5	10	5		
л-Del.						2	2
u-Coal.			5	3			

- 3. Stimuli & Subject
- Auditory stimuli were presented with the declarative verb ending -Λ
- The subjects were to assume that stimuli were spoken in casual style.
 - e.g. <u>katu-</u> 'lock up'
 . Retention tweciril <u>katuΛ</u> 'lock up pigs'
 . Glide formation tweciril <u>katwΛ</u>
- Subjects : 40 Seoul Korean speakers (age: 20-30)

1. Result: Well-formedness ratings

• I analyzed the mean ratings with the following as independent variables...

i. Process ii. Vowel quality iii. Syllable count

- Statistics
 - ANOVA(linear regression model)
 - Post-hoc test: Scheffe test,
 - Model comparison

2. Processes of stem-final vowel /i, o, u/

- An order of well-formedness rating for each process
 Glide Formation (4.68) > Hiatus Retention (3.51) > Glide Insertion(3.25)
- The well-formedness of each process is affected by Vowel quality and Syllable count (factor: VS)
- ANOVA aov(well-formedness ~ VS)
 - ✓ Glide formation F-value= 52.78, p < 0.001
 - ✓ Hiatus retention F-value= 32.67, p < 0.001
 - ✓ Glide insertion F-value= 50.42, p < 0.001

3. Glide Formation (1)

- The well-formedness of glide formation is higher in disyllabic stems than in monosyllabic stems.
- It seems that /i/ is more affected than /u/ by syllable count.
- However, the syllable count and vowel quality factors aren't clearly confirmed in Scheffe test.

3. Glide Formation (2)

- Linear regression on well-formedness of /i, u/
 - ✓ linear model : lm(rating ~ syllable)
 - ✓ Syllable count factor is significant (p < 0.001)
- Vowel quality factor doesn't improve the linear model.
 - \checkmark Model comparison
 - Linear Model 1: rating ~ syllable
 - Linear Model 2: rating ~ syllable + vowel p > 0.05
- The result of glide formation itself doesn't correspond the previous descriptions which report the vowel quality effect.
 cf. slide 9

3. Glide Formation (3)

• Lexical exceptions with respect to the restriction of glide formation

	Mean	
ki- $\Lambda \rightarrow ky_{\Lambda}$	2.575	'crawl'
$c'o-a \rightarrow c'wa$	2.575	'peck'
$i-\Lambda \rightarrow y\Lambda$	2.475	'place sth on the head'

4. Glide Insertion

Scheffe test

(Groups	Treatments	Means
	a	I-1	3.912
	a	O-1	3.835
	b	U-1	3.555
	b	U-2	3.55
-	С	I-2	2.96

- In monosyllabic-stems, 'i, o' are preferred over 'u'.
- In disyllabic-stems, 'u' is preferred over 'i'.
- Stem-final 'i' is more affected by the syllable count effect than 'u'.

5. Hiatus Retention

 Scheffe test 	t
----------------------------------	---

(Groups	Treatments	Means
	a	0-1	4.085
	а	I-1	4.083
	b	U-1	3.769
	b	U-2	3.718
	С	I-2	3.236

- In monosyllabic-stems, 'i, o' are more likely to tolerate hiatus.
- In disyllabic-stems, 'u' is more likely to tolerate hiatus.
- Stem-final 'i' is more influenced by the syllable count effect than 'u'.

6. Correlations with Hiatus Retention

- The negative correlation with Glide Formation
 - . The coefficient of correlation: -0.416 (p < 0.1)Hiatus Retention : I-1, O-1 > U > I-2

Glide Formation : I-1, O-1, U-1 < U-2, I-2

- . Unlike the prediction of previous studies, the correlation isn't fully significant.
- The positive correlation with Glide Insertion.
 - . The coefficient of correlation: 0.864 (p < 0.0001)

Hiatus Retention :	I-1, O-1 > U > I-2
Glide Insertion :	I-1, O-1 > U > I-2

. The correlation wasn't mentioned in previous studies.

7. Other processes in Stem-final vowel /o, u/

- /o, u/ deletion
 - ✓ U-2(3.44) > U-1(2.9) > O-1(2.45)
 - ✓ The deletion of disyllabic stem-final vowel /u/ is not totally unacceptable.

e.g. nanu+ $\Lambda \rightarrow$ nan Λ 'divide'

 /u/-coalescence forms, 'to, co', are relatively preferred over other words with stem-final /u/

$\frac{\text{Mean}}{\text{e.g. cu-}\Lambda \rightarrow \text{co}} \quad 3.8 \quad \text{`give'} \\ \text{tu-}\Lambda \rightarrow \text{to} \quad 3.25 \quad \text{`put'}$

8. Processes of stem-final vowel /e/

	E-1	E-2
HR	3.7	3.48
GI	3.0	2.9
۸-Del	4.47	4.47

✓ ∧ deletion > Hiatus Retention > Glide Insertion
✓ In each process, there is no syllable count effect

9. Summary

Token Process	I-1	I-2	U-1	U-2	0-1	E-1	E-2
Glide Formation*	4.3	4.75	4.41	4.61	4.4		
Hiatus Retention	4.08	3.23	3.76	3.71	4.08	3.7	3.48
Glide Insertion	3.91	2.96	3.55	3.55	3.83	3.03	2.9
o, u-Deletion			2.95	3.44	2.45		
۸-Deletion						4.47	4.47
u-Coalescence**			2.62	2.4			

✓ Exception

* ki- $\Lambda \rightarrow$ ky Λ 2.575 i- $\Lambda \rightarrow$ y Λ 2.475 c'o-a \rightarrow c'wa 2.575

** tu- $\Lambda \rightarrow$ to 3.25 cu- $\Lambda \rightarrow$ co 3.8

Analysis : Stochastic Optimality theory

1. General constraints

- i. Constraints prohibiting hiatus retention
 *VV: The sequence Vowel-Vowel is not allowed
- ii. Constraints prohibiting glide formation
 *CG: The sequence Consonant-Glide is not allowed in onset IDENT(syllabic): Corresponding segments have identical values for feature [syllabic]
- iii. Constraints prohibiting glide insertionDEP(ROOT): Output segments must have input correspondents
- iV. Constraints prohibiting **deletion**MAX-[V]: Input vowels must have output correspondents

2. Constraints

- Constraints are subdivided for different phonological factors.
- In case of *VV, DEP(ROOT),

 \checkmark Constraints of each vowel are adopted.

 \checkmark Constraints of /i/ are conjoined with syllable count.

i. *VV: *iV-1, *iV-2, *oV, *uV, *eV, *iV

ii. DEP(ROOT): DEP(ROOT)-1-i, DEP(ROOT)-2-i DEP(ROOT)-0, DEP(ROOT)-u, DEP(ROOT)-e

*CG is specified for monosyllabic stems and disyllabic stems.
 *CG: *CG-1, *CG-2

3. Vowel faithfulness constraints

- The target of the process is determined by the ranking between vowel faithfulness constraints.
- MAX constraints for each vowel segment are adopted.
- MAX-[i], MAX-[u], MAX-[0], MAX-[Λ]

MAX-[i], MAX-[e], MAX-[a]

4. Lexically specified constraints (Pater 2000)

i. Constraints prohibiting /u/-coalescence UNIFORMITY-L1:

No element of the output in words of L1 has multiple correspondents in the input. (L1: words with stem-final /u/ except 'cu-, tu-')

UNIFORMITY-L2:

No element of the output in words of L2 has multiple correspondents in the input . (L2: 'cu-, tu-')

ii. Constraints prohibiting Glide formation

ID(syllabic)-L3:

Correspondent segments in words of L3 have identical values for feature [syllabic]. (L3: 'ki-, i-, c'o')

5. Variable ranking

	MAX [V]	DEP (ROOT)	*VV	*CG	ID(syllabic)	Uniformity
Deletion	*					
Insertion		*				
Retention			*			
Formation				(*)	*	
Coalescence						*

- What is the mechanism of variable ranking?
- How can the grammar predict quantitative aspect?

6. Stochastic Optimality Theory

- Probabilistic ranking model
- Ranking values are numerically assigned along a continuous scale
- In evaluation, constraints are simultaneously associated with normal distribution of noise.
- When the distributions overlap, the ranking can be reversed.

Evaluation time:

evalution ranking = grammatical ranking + noise

Boersma and Hayes 2001, Hayes and Londe 2006 $_{\rm 37}$

7. Learning the stochastic grammar

- Gradual Learning Algorithm (Boersma and Hayes 2001)
 The algorithm assign the ranking value of Stochastic OT
- OT soft 2.3.1 (Hayes, Bruce, Bruce Tesar, and Kie Zuraw 2003)

. Number of times to go through forms	100000
. Initial plasticity	1
. Final plasticity	0.001
. Number of times to test grammar	100000
. Noise	2.0
. Initial ranking value	100

8. Input Data

			MAX-[A]	MAX-2-[u]	*uV	DEP(ROOT)-u	*CG-2	ID(syllabic)
CuV2	CuV2	27.6			1			
	CwV2	67.7					1	1
	CuwV2	23.5				1		
	CV2	21.1		1				
	Cu2	0	1					
uV2	uV2	0			1			
	wV2	100						1
	uwV2	0				1		
	V2	0		1				
	u2	0	1					

- Well-formedness data has the limit on scale, unlike frequency.
- Well-formedness data \rightarrow Frequency-like data
 - ✓ Transformation (Coetzee and Kawahara, to appear)

predicted frequency = $(e^{r}/e^{5}) \times 100$ [e = 2.71, r = well-formedness rating]

9. Patterns learned

I. Patterns in Experiment

- i. Monosyllabic/Disyllabic stem-final /i, o, u/ with onset
- ii. Stem-final /e/
- iii. Exceptions of glide formation: ki-, i-, c'o

II. Included Obligatory patterns

- i. Monosyllabic stem-final vowel /o/ without onset
- ii. Disyllabic stem-final vowel /i, u/ without onset
- iii. Stem-final vowel /i/

10. Ranking value

Ranking values are assigned to yield probability distribution of candidates.

Constraint	Ranking value	Constraint	Ranking value
MAX-[e]	112.141	MAX-1-[u]	97.997
DEP(ROOT)-E	107.447	MAX-2-[u]	97.591
*eV	106.454	DEP(ROOT)-u	97.384
MAX-[i]	106	*uV	97.205
MAX-[a]	105	DEP(ROOT)-o	96.913
MAX-[ʌ]	104.958	*oV	96.496
*iV	103.001	DEP(ROOT)-1-i	96.475
MAX-[o]	99.656	*1-iV	96.331
DEP(ROOT)-2-i	98.742	*CG-1	95.959
*2-iV	98.393	*CG-2	95.817
ID(syllabic)-L3	98.097	MAX-[i]	92.999
		ID(syllabic)	89.828

Average error per candidate: 0.018 percent

11. Ranking value : stem-final /i, o, u/

- The ranking value of ID(syllabic) is low enough for GF to apply obligatorily if there is no onset.
- The raking values of *VV and *CG are close enough to each other, so that GF apply optionally if there is an onset.
- With the sets of *VV and *CG, the set of DEP(ROOT) is also close enough to each other, so that GI may apply optionally if there is an onset.

Constraint	Ranking Value
DEP(ROOT)-2-i	98.742
*2-iV	98.393
DEP(ROOT)-u	97.384
*uV	97.205
DEP(ROOT)-0	96.913
*oa	96.496
DEP(ROOT)-1-i	96.475
*1-iV	96.331
*CG-1	95.959
*CG-2	95.817
ID(syllabic)	89.828

12. Ranking value: Deletion

- The ranking values of MAX-[i] are low enough for i-deletion to apply obligatorily.
- The raking values of *eV and MAX-[Λ] are close to each other, so that Λ-deletion is applied optionally.
- The raking values of *oV and MAX-[o] aren't close enough for o-deletion to apply frequently.
- The ranking values of *uV, MAX-1-[u], and MAX-2-[u] are close, so that u-deletion is likely acceptable.

Constraint	Ranking Value
MAX-[e]	112.141
DEP(ROOT)-E	107.447
*eV	106.454
MAX-[a]	105
ΜΑΧ-[Λ]	104.958
*iV	103.001
MAX-[0]	99.656
MAX-1-[u]	97.997
MAX-2-[u]	97.591
*uV	97.205
*oV	96.496
MAX-[i]	92.999

Conclusion

- i. Previous studies are short of consistent and quantitative data
- ii. I report well-formedness of processes from experiment.
- iii. The gradual intuition in context of vowel hiatus is formalized by Stochastic OT.
- iv. The grammar can predict the variable patterns with precise probabilistic distributions.

I appreciate Prof. Jun Jongho and Cho Hyesun for their invaluable advice on my research. Any remaining errors and infelicities are of course my own responsibility.

References (selected)

강옥미(2003). 『한국어 음운론』. 태학사. 고광모(1991), 『국어의 보상적 장음화 연구』, 서울대학교 언어학과 박사학위 논문. 국립국어원(2012), 『표준국어대사전』, http://www.korean.go.kr. 기세관(1984), 모음축약의 제약성, 『순천대학논문집』 3, 411-431. 김경아(2003), 활음 첨가와 활음 탈락, 『인문논총』 11, 49-65. 김봉국(2002), 『강원도 남부지역 방언의 음운론』, 서울대학교 국어국문학과 박사학위 논문. 김성규(2004), '워 > 오'의 통시적 고찰, 『국제어문』 30, 5-26. 김완진(1972), 형태론적 현안의 음운론적 극복을 위하여 -이른바 장모음의 경우-, 『동아문화』 11, 273-299. 김정태(1999), 과도음 관련 음운 현상 고찰, 『어문학연구』 8, 101-122. 김종규(2010), 모음탈락과 모음축약의 음운론적 상관성, 『음성·음운·형태론연구』 16(3), 345-370 김현(1999), 모음간 w 탈락과 w 삽입의 역사적 고찰, 『애산학보』 23, 195-254. 도수희(1983), 한국어 음운사에 있어서 부음 y에 대하여, 『한글』 179, 85-132. 박나영(2012), 한국어 모음충돌 회피 현상에 대한 연구 - 변이양상을 중심으로-, 서울대학교 언어학과 석사학위 논문. 박유진(2010), 국어 모음충돌 회피의 통시적 변화, 경북대학교 국어국문학과 석사학위 논문. 성석제(2004), 『충북과 경북 지역간의 방언 경계에 대하여: 몇몇 음운현상을 중심으로』, 서울대학교 국어국문학과 박사학위 논문. 송철의(1995), 국어의 활음화와 관련된 몇 문제, 단국대학교 국어국문학과, 『단국어문논집』 창간호. 269-292. 엄태수(1996), 현대국어의 이중모음화 현상에 대하여, 『언어』 21(1), 401-420. 유재원(1985), 현대 국어의 모음충돌 회피 현상에 대하여, 『한글』 189, 3-24. 유필재(2001), 『서울지역어의 음운론적 연구』, 서울대학교 국어국문학과 박사학위 논문. 이진호(2005), 『국어 음운론 강의』, 삼경문화사. 이호영(1996/2003), 『국어 음성학』, 태학사. 임석규(2011), 활음첨가 재론, 『우리말글』 53, 65-83. 정승철(2008), 방언형의 분포와 개신형-양순음 뒤 v계 상향 이중모음의 축약현상을 중심으로-,『어문연구』36(2), 99-116. 정연찬(1997), 『(개정)한국어 음운론』, 한국문화사. 차재은(1993). 중세 국어의 w계 이중모음에 관한 소고. 『주시경 학보』11. 150-155. 최명옥(2004), 『국어음운론』, 태학사. 하세경(2000), 국어 모음충돌 회피 현상에 관한 연구-최적성 이론을 중심으로-, 서울대학교 언어학과 석사학위 논문. 하영우(2010), 한국어의 /w/ 탈락 현상에 대한 연구, 고려대학교 국어국문학과 석사학위논문. 허웅(1985), 『국어음운학: 우리말 소리의 오늘, 어제』, 샘문화사. 황규직·신남철(1979), 한국어에서의 활음삽입과 활음형성, 『學術誌』 23(1), 59-80.

References (selected)

Boersma, Paul and Hayes, Bruce(2001), Empirical tests of the gradual learning algorithm, *Linguistic Inquiry* 32(1), 45–86.
Boersma, Paul(2003), Stochastic Optimality Theory, *Meeting of the Linguistic Society of America*, Atlanta, January 3, 2003.
Casali, Roderic. F(1996), *Resolving Hiatus*, Doctoral Dissertation, Los Angeles: DEPartment of Linguistics, University of California, Los Angeles.
[Available on Rutgers Optimality Archive 215. http://roa.nutgers.edu/]
Coetzee, Andries and Shigeto Kawahara(to appear), Frequency biases in phonological variation, *Natural Language and Linguistic Theory*.
[http://www.rci.rutgers.edu/~kawahara/toff/CoetzeeKawahara2011.pdf] accessed on 2012. 03. 10.
Han, Eun Joo(2006), Vowel coalescence and faithfulness, *Studies in phonetics, phonology and morphology* 12(3), 699–722.
Hayes, Bruce and Zsuzsa Cziráky Londe(2006), Stochastic phonological knowledge: The case of Hungarian vowel Harmony, *Phonology* 23, 59–104.
Kang, Ong Mi(1999a), A correspondence Approach to Glide Formation in Korean, *Korean Journal of Linguistics* 24(4), 477–496.
Kang, Ong Mi(1999b), A correspondence Analysis Hiatus Resolution in Korean, *Studies in Phonetics, Phonology and Morphology* 5, 1–24.
Kang, Hyun Sook(1998), Glide Formation and Compensatory Lengthening within Sympathy Theory, *Studies in Phonology and Morphology* 4, 69–88.
Kager, René(1999), *Optimality Theory*, Cambridge: Cambridge.
Kawahara, Shigeto(2011), Japanese loanword devoicing revisited: A rating study, *Natural Language and Linguistic Theory* 29(3), 705–723.
Kim, Jong Kyoo(2000), *Quantative-sensitivity and feature-sensitivity of vowels: a constriant-based approach to Korean vowel phonology*, Doctoral Dissertation, Bloomington, IN: DEPartment of Linguistics, Indiana University.

Lee, Min Kyung (2001), Optionality and Variation in optimality theory: Focus on Korean phonology, Doctoral Dissertation, Bloomington, IN: Department of Linguistics, Indiana University.

I. Patterns in Experiment

Cu ₁	Сил1	29	Сіл1	Сіл1	39.9	Coal	Coa1	39.9
	CwA1	55.5		Сјл1	49.7		Cwa1	54.9
	CuwA1	23.5		Cij _A 1	33.7		Cowal	31.1
	Сл1	12.9		Сл1	0		Cal	7.8
	Cu1	0		Cil	0		Co1	0
Cur2	CuA2	27.6	Cia2	Сіл2	17.1	ел	ел	24.5
	CwA2	67.7		Сј л2	77.9		e	58.9
	CuwA2	23.5		Cij _A 2	13		ејл	13
	Сл2	21.1		С л2	0		Λ	0
	Cu2	0		Ci2	0			
і л1	<u>і</u> л1	39.9	kin1	kin1	39.9	c'oa1	c'oa1	39.9
	ј л1	8.1		kjal	8.9		c'wal	8.9
	ija1	33.7		kijal	33.7		c'owa1	31.1
	л1	0		kл1	0		c'al	0
-	i1	0		ki1	0		c'o1	0

II. Including Obligatory patterns

oal	oal	0	uл 2	u л2	0	іл 2	і л2	0	
	wa1	100		wn2	100		јл 2	100	
	owa1	0		uwA2	0		ij∧2	0	
	a1	0		<u>л</u> 2	0		<u>л</u> 2	0	
	o1	0		u2	0		i2	0	
ŧл	±Λ	0							
	i	0							
	Λ	100							