Phonotactics in Native and Sino-Korean:

A Maximum Entropy-based phonotactic learning

Nayoung Park (Department of Linguistics, Seoul National University)

1. Introduction	4. Results: Constraints learned			
Phonotactics: Native speakers can judge whether certain strings are	Categorical phonotactics			
possible or not in their language. e.g., <u>br</u> ick, <u>bl</u> ick : well-formed in English vs. <u>Ib</u> ick : ill-formed	• Common, or similar, between native and Sino-Korean • Constraint 1: $\begin{bmatrix} -high \\ -back \end{bmatrix}$ # meaning: */i/# weight: 5.8 (Sino), 4.27 (native)			
Is the well-formedness judgment involved always categorical?	 Constraint 2-1: *[-high][-sonorant]/(-dorsal] # meaning: */ɛp, ɛs/ Sino: weight 5.31 			
 No, it is not always the case that native speakers' intuition is all-or-nothing. e.g., Gradient preference in English (Berent et al. 2007) <u>bl</u>if > <u>bn</u>if > <u>bd</u>if > <u>Ib</u>if 	 Constraint 2-2: *[^{-high}_{-back}][-sonorant]# meaning: */ɛp, ɛs, ɛk/ native: weight 4.37 ✓ C1: Words like loanword '스케이트 /sɨk^heit^hɨ/' aren't attested in both lexicons. ✓ C2: Similar constraints are accidentally true for both lexicons · Words like loanword '앱 [ɛp]' aren't allowed. 			

>Phonotactics in Korean nouns

- Categorical restrictions exist. e.g., /ji, ji, wu, wo, wi/ never occur.
- Do gradient patterns also exist? Probably.
 - ✓ One potential candidate: Vowel-vowel sequences do occur but somewhat rarely. e.g., /ai/
- It is usually assumed that such phonotactic restrictions, categorical or gradient, and their strength differ depending on the lexical strata.
- Native and Sino-Korean words have different phonotactic patterns. e.g., Restricted occurrence of tense consonants in Sino-Korean. (Kwon 1997 etc.)
- >I will explore phonotactics of native and Sino-Korean words, using UCLA phonotactic learner of Maximum Entropy model cf. Cho (2012) (Hayes and Wilson 2008).

2. A maxent model of phonotactic learning

- > Conception: Quantitative pattern matching grammar
- A maxent grammar assigns probabilities on phonological forms.

	Sino-Korean only	meaning	weight	cf. attested non-Sino-Korean words
	C3: *[+aspirate]#	No word-final aspirate	5.8	꽃 / k'oc ^h /
•	C4: * $\begin{bmatrix} -\text{sonorant} \\ -\text{labial} \\ -\text{dorsal} \end{bmatrix}$ #	No word-final coronal	5.84	낫 /nas/
	C5: *[+tense]#	No word-final tense	5.69	밖 /pak'/
	C6: *#[+aspirate] +dorsal [+syllable]	No word-initial /k ^h + vowel/	4.54	코 /kʰo/
	C7: * [-round] [+low] [-back]	No diphthong /jɛ/	4.54	0#フ /jɛki /
•	C8: *[+round] [-sonorant] #	No word-final /op, up/	4.47	손톱 /sont ^h op/
•	C9: $*\#\begin{bmatrix}-\text{high}\\-\text{low}\\-\text{back}\end{bmatrix}$	No word-initial /e/	3.45	에누리 /enuli/

- Cf. Previous studies
- \checkmark C1, C3-6 and C9 are reported in the previous studies. (Kwon 1997, Kang 1998, An 2009, Shin 2009) ✓ C2 is from both lexicons. cf. A gap for Sino-Korean (Shin 2009)
- \checkmark C8 is newly learned. It corresponds in part to */op, om, up, um/ reported in Kang (1998).

Gradient phonotactics (i.e. constraints with exceptions)

- Common
- **C10:** $* \begin{bmatrix} +high \\ +back \end{bmatrix} \begin{bmatrix} +round \\ +syllable \end{bmatrix}$ meaning: No /i, u/ followed by /o, u/

weight: 4.08 (Sino) 3.24 (native)

- ✓ C10 learned in Cho's (2012) simulation
- The probabilities correspond to their phonotactic well-formedness.
- The model effectively detects rare but existing patterns.
- >Characteristics
- Only markedness constraints are learned.
- Inductive model: Constraints are learned without prior constraints.
- > Weighting on constraints by maximum entropy principle
- To maximize the probability of the observed forms, the weights of constraints in a set Ω are assigned.
- Constraints with higher weights strongly restrict violated forms.
- Searching constraints with heuristics
- Accuracy: Observed/Expected ratio of constraints
- Generality: Shorter and general feature matrices are favoured.
- Under the thresholds of O/E, general constraints are selected.

3. Simulation

Sino-Korean only	meaning	weight	exceptions
C11: *#[+tense]	No word-initial tense	5.82	words with 쌍 /s'aŋ/
C12: *[+syllable] [-high] [-back]	No vowel followed by /e, ε/	4.39	차액 /cʰaɛk/, 우애 /uɛ/
C13: * $\begin{bmatrix} -low \\ +back \\ -round \end{bmatrix}$ [-high]	No /ɨ, ʌ/ followed by non-high V	4.16	어업 /ʌʌp/, 저온 /cʌon/
Native-Korean only	meaning	weight	exceptions
C14: *[+tense]#	No word-final tense	4.53	밖 /pak'/
C15: * -continuant -aspirate +coronal	No word-final /t, c/	3.53	빚 /pic/
C16: *# $\begin{bmatrix} -high \\ -back \end{bmatrix}$	No word-initial /e, ε/	3.38	애벌레 /ɛpʌlle/
C17: *# $\begin{bmatrix} +high \\ +back \\ -round \end{bmatrix}$	No word-initial /ɨ/	3.10	으뜸 /ɨt'ɨm/
C18: $*\begin{bmatrix} -cont \\ +asp \\ -cor \end{bmatrix} \begin{bmatrix} -high \\ -low \\ -round \end{bmatrix}$	No /k ^h , p ^h / followed by /e, ∧ /	2.87	올케 /olk ^h e/
C19: * [-low] [-round] + syl	No high or medial V followed non-round V	2.79	헤엄 /heʌm/
C20: *[+tense] $\begin{bmatrix} -low \\ +back \end{bmatrix}$ #	No tense preceding a word-final /u, o, ʌ/	2.66	대꾸 /tɛk'u/

> Hiatus avoidance constraints are active in both native and Sino-Korean lexicons.

- UCLA phonotactic learner (Hayes and Wilson 2008) (http://www.linguistics.ucla.edu/people/hayes/Phonotactics)
- Training data: Common nouns including complex words
 - Native-Korean: 6,121 words (from Cho 2002, Kang & Kim 2009)
 - Sino-Korean: 22,859 words (from Kang & Kim 2009)
 - Pronunciation forms based on Standard Korean dictionary (http://stdweb2.korean.go.kr/search/List_dic.jsp)
- \succ All segments are not underspecified, except [+/-anterior].

- ✓ Relevant constraints: C10, C12-13, and C19
- Previous studies (e.g. Ha 2000): hiatus avoidance is active only in native Korean lexicon.
- But, 3 out of 4 constraints learned in the present simulation hold true for Sino-Korean lexicon.

- All categorical phonotactic patterns that have been reported in the previous studies were captured.
- Constraints for gaps and gradient patterns are newly learned.
- No categorical constraint was learned only from native-Korean lexicon.

• The prediction of grammar will be examined by well-formedness test on nonce words.

Selected reference An, S.-J. 2009. Characteristics of Sino-Korean word syllables. Morphology 11.1. 43-59. Serent, I, D. Steriade, T. Lennertz, and V. Vaknin. 2007. What we know what we have never heard: Evidence from perceptual illusions. Cognition 104:591-630. Cho, H-S. 2012. Statistical learning of Korean phonotactics. Studies in Phonetics, Phonology and Morphology 18.2: 339-370. National Institute of the Korean Language. A Ha, S-K. 2000. Vowel hiatus resolution in Korean: An Optimality theory account. M.A. Thesis. Seoul National University. Learning. Linguistic Inquiry 39.3: 379-440. Akang, B. and H. Kim (2009), Hankwuke Sayong Pinto : 1500man Ecel Seyconghyengthayuymipwunsekmalmwungchi Kipan, Hankwuke Sayong Pinto in Phonetics, Phonology and Morphology 4: 55-67. Kwon. I-H. 1997. Hyentaykwuke hancaeuy umwunloncek kochal (The phonological study of contemporary Sino-Korean). Kwukehak 29: 243-260. unknown word guessing. Computational Linguistics 23:405-423. Shin, J-Y. 2009. Frequency related information and syllable structure constraints on Sino-Korean. Malsoliwa Umsengkwahak 1.2: 129-140.

Acknowledgement I appreciate Prof. Jun Jongho for invaluable advice on my research. Also, I give thanks to Jang Hayeon for providing training data and comments.

e-mail: arimnet@naver.com